Journal of Organometallic Chemistry, 397 (1990) 383-393 Elsevier Sequoia S.A., Lausanne JOM 21144

# Preparation and molecular structures of two tetranuclear $\pi$ complexes, with cubane Cu<sub>4</sub>Cl<sub>4</sub>-cores, between *endo*-dicyclopentadiene and copper(I) chloride

# Mikael Håkansson and Susan Jagner \*

Department of Inorganic Chemistry, Chalmers University of Technology, S-412 96 Göteborg (Sweden) (Received May 4th, 1990)

### Abstract

Two tetranuclear complexes,  $[Cu_4Cl_4(C_{10}H_{12})_4]$  (1 and 2), containing distorted cubane  $Cu_4Cl_4$  cores, between copper(I) chloride and *endo*-dicyclopentadiene have been prepared and their crystal structures determined. *endo*-Dicyclopentadiene coordinates to copper(I) via the double bond in the norbornene ring in both complexes, the copper(I) atom exhibiting distorted tetrahedral (trigonal pyramidal) coordination geometry. The Cu-C distances range from 2.011(16)-2.092(15) Å in 1 and from 2.051(9)-2.077(9) Å in 2. Complex 2 can be described as a loose association of two  $Cu_2Cl_2(C_{10}H_{12})_2$  dimers, with Cu-Cl bonds of 2.284(2)-2.323(3) Å, held together by long  $Cu \cdots Cl$  interactions of 2.827(3) and 2.852(3) Å. The cubane core of the tetragonal complex 1 is also distorted, with Cu-Cl bonds in the range 2.274(4)-3.015(4) Å, but the distortion is such that no cube face is composed solely of short Cu-Cl bonds.

# Introduction

Although *endo*-dicyclopentadiene acts as a tetrahapto ligand in a number of transition metal complexes [1], infrared spectroscopic studies of the 1:1 complex formed between *endo*-dicyclopentadiene and copper(I) chloride indicated that only one double bond was involved in complexation [2]. It was suggested [2] that the C=C bond involved was that in the cyclopentene ring of the molecule, but later evidence was interpreted in favour of coordination via the olefinic bond in the norbornene ring [3]. A subsequent infrared investigation showed that while the IR frequency associated with the double bond in the cyclopentene ring remained almost unperturbed on complexation, that corresponding to C=C in the norbornene ring was lowered by 100 cm<sup>-1</sup>, providing strong evidence for norbornene complexation; the complex was, moreover, suggested to have a four-membered Cu<sub>2</sub>Cl<sub>2</sub> core [4].

Similar results with respect to coordination of dicyclopentadiene to copper(I) have been obtained for the 1:2 complex between copper(I) trifluoromethanesulfonate and *endo*-dicyclopentadiene, copper(I) here being shown to undergo *exo* complexation with the norbornene C=C double bonds of two dicyclopentadiene ligands [5]. Although the 1:1 complex formed between *endo*-dicyclopentadiene and copper(I) chloride has not been characterised crystallographically, it has been reported to crystallize with a tetragonal unit cell containing 32 formula units of CuCl( $C_{10}H_{12}$ ) [6]. In connection with a project directed towards the preparation of novel complexes between copper(I) chloride and conjugated and non-conjugated dienes [7], we have isolated the tetragonal phase of the 1:1 complex, obtained a further, orthorhombic, phase, and determined the crystal and molecular structures of both compounds.

# Experimental

All operations were carried under nitrogen or argon by Schlenk techniques. Copper(I) chloride was purified as described in ref. 8, and dried in vacuo. Dicyclopentadiene (Aldrich, 95%) was deoxygenated and used without further purification. Tetrahydrofuran (Aldrich, anhydrous) was used as purchased.

## Preparation of tetra- $\mu$ -chloro-tetrakis[dicyclopentadienecopper(I)] (tetragonal, 1)

Compound 1 was prepared by the method described by Schrauzer and Eichler [2]. Copper(I) chloride (0.5 g) was dissolved in 10 ml dicyclopentadiene by heating gently. When the solution was cooled to ambient temperature a white voluminous precipitate of 1 was formed. The precipitate was removed by filtration and the filtrate was allowed to evaporate slowly under nitrogen at room temperature. Colourless rods of 1 were deposited after a few days.

# Preparation of tetra- $\mu$ -chloro-tetrakis[dicyclopentadienecopper(I)] (orthorhombic, 2)

Tetra- $\mu$ -chloro-tetrakis[dicyclopentadienecopper(I)] (tetragonal, 1) (0.5 g), not completely purified from the dicyclopentadiene solvent, was dissolved in 20 ml tetrahydrofuran. The solution was allowed to evaporate slowly under nitrogen, and colourless prisms of 2 were deposited after a few days.

Infrared spectra. Spectra were recorded on a Mattson Polaris FTIR spectrometer, using Nujol mulls and CaF<sub>2</sub> windows (1 and 2) and a CaF<sub>2</sub> cell (dicyclopentadiene). For 1 bands at 1614 and 1471 cm<sup>-1</sup> ( $\nu$ (C=C)) and 1452, 1442 cm<sup>-1</sup> ( $\delta$ (CH<sub>2</sub>)) were obtained. Corresponding bands for 2 were 1613 and 1471 cm<sup>-1</sup> ( $\nu$ (C=C)) and 1456, 1440 cm<sup>-1</sup> ( $\delta$ (CH<sub>2</sub>)). The ligand itself exhibited bands at 1615 and 1572 cm<sup>-1</sup> ( $\nu$ (C=C)) and 1449 and 1439 cm<sup>-1</sup> ( $\delta$ (CH<sub>2</sub>)). The assignments involve the assumption that there is no coupling between stretching and bending modes.

# Determination of the crystal and molecular structures of tetra- $\mu$ -chloro-tetrakis[dicyclopentadienecopper(I)] (tetragonal, 1 and orthorhombic, 2)

Crystal and intensity data. Owing to loss of dicyclopentadiene from the compounds, as well as sensitivity towards oxygen and water-vapour, the crystals were transferred to a Dewar vessel adapted for mounting crystals in glass capillaries at low temperature and an inert atmosphere. Single crystals,  $0.30 \times 0.20 \times 0.15$  mm (1), and,  $0.30 \times 0.20 \times 0.20$  mm (2), were thus sealed in a glass capillaries at

| i                                                   | 1                                         | 2                                        |
|-----------------------------------------------------|-------------------------------------------|------------------------------------------|
|                                                     | 924.4                                     | 924.4                                    |
| Unit-cell dimensions                                | $a 21.258(5) c 18.758(10) \dot{A}$        | a 18.151(7) b 10.494(3)                  |
|                                                     | V 8477(5) Å <sup>3</sup>                  | c 19.617(9) Å V 3737(4) Å <sup>3</sup>   |
| Space group                                         | P 4/ncc (No. 130) [9a]                    | <i>Pbcn</i> (No. 60) [9a]                |
|                                                     | 8                                         | 4                                        |
|                                                     | $1.45 \text{ g cm}^{-3}$                  | $1.64 \text{ g cm}^{-3}$                 |
| μ(Mo-K <sub>a</sub> )                               | 22.7 cm <sup>-1</sup>                     | 25.7 cm <sup>-1</sup>                    |
| Habit                                               | Colourless rods                           | Colourless prisms                        |
| Crystal size                                        | $0.30 \times 0.20 \times 0.15 \text{ mm}$ | $0.30 \times 0.20 \times 0.20$ mm        |
| Temperature                                         | −127±1°C                                  | −144±1°C                                 |
| 20 range                                            | $3.5 < 2.0 < 50^{\circ}$                  | $3.5 < 2\theta < 50^{\circ}$             |
| Scan mode                                           | ω-2 <b>θ</b>                              | ω-2 <b>θ</b>                             |
| w scan rate                                         | 8° min <sup>-1</sup>                      | 32° min <sup>-1</sup>                    |
| Scan width                                          | $(1.00+0.30 \tan \theta)^{\circ}$         | $(1.10+0.30 \tan \theta)^{\circ}$        |
| No. of independent reflections measured             |                                           |                                          |
| excluding those systematically absent               | 3725                                      | 3284                                     |
| No. of observed reflections $[I > 3.0 \ \sigma(I)]$ | 1438                                      | 1697                                     |
| Method used to solve structure                      | Direct methods (MITHRIL) [10];            | Direct methods (MITHRIL) [10];           |
|                                                     | subsequent electron density calculations  | subsequent electron density calculations |
| No. of parameters refined                           | 217                                       | 217                                      |
| Reflections weighted according to                   | $[\sigma^{2}(F_{o})]^{-1}$                | $[\sigma^2(F_0)]^{-1}$                   |
|                                                     | 0.065                                     | 0.054                                    |
|                                                     | 0.085                                     | 0.064                                    |
| Max.; min residual electron density                 | 1.50; -0.87 e Å <sup>-3</sup>             | $0.92; -0.87 e Å^{-3}$                   |

Crystal data and experimental details for tetra-u-chloro-tetrakis/dicvclopentadienecopper(I)] (tetragonal. I and orthorhombic. 2)

Table 1

385

approximately -150 °C and transferred, at the same temperature, to a Rigaku AFC6R diffractometer. Intensity data were measured for  $3.5 < 2\theta < 50$  ° at  $-127 \pm 1$  °C (1) and  $-144 \pm 1$  °C (2), using graphite-monochromated Mo- $K_{\alpha}$  radiation from a RU200 rotating anode source operated at 9 kW (50 kV; 180 mA). The  $\omega - 2\theta$  scan mode was employed, weak reflections ( $I < 10\sigma(I)$ ) being rescanned twice and counts accumulated to improve counting statistics. Stationary background counts were recorded on each side of the reflection, the ratio of peak counting time to background counting time being 2:1. Cell constants were obtained by least-squares refinement using the setting angles for 25 reflections in the range  $27.9 < 2\theta < 38.8^{\circ}$  (1) and  $41.0 < 2\theta < 46.8^{\circ}$  (2). Crystal data and further details concerning the measurement of intensities are given in Table 1.

Structure determination and refinement. The structures were solved by direct methods (MITHRIL) [10], and subsequent electron density calculations. Full-matrix least-squares refinement of positional and anisotropic thermal parameters for the non-hydrogen atoms, with those hydrogen atoms whose positions could be located unambiguously from a difference map (17 for 1 and 20 for 2) included as fixed contributions ( $B = B_{eq}$  of the carrying carbon atom), gave final residuals of R = 0.065 ( $R_w = 0.085$ ) for 1 and R = 0.054 ( $R_w = 0.064$ ) for 2. Further details concerning the refinements are given in Table 1. Atomic scattering factors and anomalous disper-

Table 2

| Atom  | x          | У           | Z          | B <sub>eq</sub> <sup>b</sup> |
|-------|------------|-------------|------------|------------------------------|
| Cu(1) | 0.56228(9) | 0.01169(9)  | 0.3342(1)  | 2.25(9)                      |
| Cu(2) | 0.65702(9) | 0.05391(10) | 0.2041(1)  | 2.4(1)                       |
| Cl(1) | 0.5805(2)  | -0.0189(2)  | 0.1786(2)  | 2.2(2)                       |
| Cl(2) | 0.6516(2)  | 0.0719(2)   | 0.3249(2)  | 2.0(2)                       |
| C(1)  | 0.5316(7)  | -0.0794(7)  | 0.3564(9)  | 2(1)                         |
| C(2)  | 0.5975(8)  | -0.0751(7)  | 0.3593(8)  | 2(1)                         |
| C(3)  | 0.6151(6)  | -0.0822(7)  | 0.4372(8)  | 2(1)                         |
| C(4)  | 0.6048(8)  | -0.1495(7)  | 0.4558(8)  | 2(1)                         |
| C(5)  | 0.6318(9)  | -0.1991(9)  | 0.4082(10) | 4(1)                         |
| C(6)  | 0.5818(11) | -0.2291(8)  | 0.3729(11) | 4(1)                         |
| C(7)  | 0.5196(10) | -0.2081(8)  | 0.3957(10) | 4(1)                         |
| C(8)  | 0.5308(7)  | -0.1554(9)  | 0.4541(10) | 3(1)                         |
| C(9)  | 0.5104(7)  | -0.0882(8)  | 0.4312(9)  | 2(1)                         |
| C(10) | 0.5569(7)  | -0.0499(7)  | 0.4726(7)  | 2(1)                         |
| C(11) | 0.7175(7)  | 0.0649(7)   | 0.1171(7)  | 2(1)                         |
| C(12) | 0.7330(7)  | 0.1041(8)   | 0.1753(9)  | 3(1)                         |
| C(13) | 0.7969(9)  | 0.0817(9)   | 0.2040(9)  | 4(1)                         |
| C(14) | 0.8459(8)  | 0.0979(11)  | 0.1428(11) | 5(1)                         |
| C(15) | 0.8456(8)  | 0.1638(11)  | 0.1119(11) | 5(1)                         |
| C(16) | 0.8296(9)  | 0.1578(11)  | 0.0385(13) | 5(1)                         |
| C(17) | 0.8198(9)  | 0.0911(11)  | 0.0168(9)  | 5(1)                         |
| C(18) | 0.8290(8)  | 0.0490(9)   | 0.0822(9)  | 3(1)                         |
| C(19) | 0.7673(8)  | 0.0146(8)   | 0.1105(8)  | 3(1)                         |
| C(20) | 0.7883(7)  | 0.0101(9)   | 0.1908(9)  | 3(1)                         |

Fractional coordinates and equivalent isotropic thermal parameters (Å<sup>2</sup>) for the non-hydrogen atoms in  $[Cu_4Cl_4(C_{10}H_{12})_4]$  (tetragonal, 1)<sup>*a*</sup>

<sup>a</sup> Estimated standard deviations are given in parentheses. <sup>b</sup>  $B_{eq}$  is defined as  $\frac{8\pi^2}{3} \sum_{i=j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$ .

Table 3

| Atom  | x          | у            | Z          | B <sub>eq</sub> <sup>b</sup> |
|-------|------------|--------------|------------|------------------------------|
| Cu(1) | 0.92981(7) | 0.3769(1)    | 0.80366(6) | 2.89(6)                      |
| Cu(2) | 0.92542(7) | 0.1529(1)    | 0.70738(6) | 2.58(5)                      |
| Cl(1) | 0.9149(1)  | 0.3674(2)    | 0.6862(1)  | 2.3(1)                       |
| Cl(2) | 0.9216(1)  | 0.1635(2)    | 0.8253(1)  | 2.5(1)                       |
| C(1)  | 0.9215(5)  | 0.5652(8)    | 0.8309(4)  | 2.3(4)                       |
| C(2)  | 0.9157(5)  | 0.4934(8)    | 0.8883(5)  | 2.7(5)                       |
| C(3)  | 0.8372(5)  | 0.5019(9)    | 0.9127(5)  | 3.1(5)                       |
| C(4)  | 0.8288(6)  | 0.6431(10)   | 0.9395(5)  | 3.6(5)                       |
| C(5)  | 0.8882(7)  | 0.6987(12)   | 0.9842(5)  | 4.2(6)                       |
| C(6)  | 0.9235(7)  | 0.8003(11)   | 0.9514(6)  | 4.6(6)                       |
| C(7)  | 0.8928(6)  | 0.8186(9)    | 0.8860(6)  | 3.5(5)                       |
| C(8)  | 0.8317(6)  | 0.7230(8)    | 0.8730(5)  | 2.9(5)                       |
| C(9)  | 0.8465(5)  | 0.6189(8)    | 0.8167(4)  | 2.3(4)                       |
| C(10) | 0.7977(5)  | 0.5129(9)    | 0.8448(5)  | 2.8(5)                       |
| C(11) | 0.9016(5)  | 0.0432(9)    | 0.6238(5)  | 2.5(4)                       |
| C(12) | 0.9124(5)  | - 0.0354(7)  | 0.6795(5)  | 2.0(4)                       |
| C(13) | 0.8378(5)  | -0.0882(8)   | 0.6986(5)  | 2.2(4)                       |
| C(14) | 0.8167(5)  | -0.1844(9)   | 0.6413(5)  | 3.0(5)                       |
| C(15) | 0.8748(7)  | -0.2797(9)   | 0.6189(7)  | 5.0(7)                       |
| C(16) | 0.8900(8)  | - 0.2460(15) | 0.5469(10) | 8(1)                         |
| C(17) | 0.8546(7)  | -0.1444(12)  | 0.5222(6)  | 4.6(6)                       |
| C(18) | 0.8050(5)  | -0.0966(10)  | 0.5789(5)  | 3.1(5)                       |
| C(19) | 0.8205(5)  | 0.0408(9)    | 0.6083(4)  | 2.3(4)                       |
| C(20) | 0.7875(5)  | 0.0230(8)    | 0.6797(4)  | 2.2(4)                       |

Fractional coordinates and equivalent isotropic thermal parameters (Å<sup>2</sup>) for the non-hydrogen atoms in  $[Cu_4Cl_4(C_{10}H_{12})_4]$  (orthorhombic, 2) <sup>*a*</sup>

<sup>a</sup> Estimated standard deviations are given in parentheses. <sup>b</sup>  $B_{eq}$  is defined as  $\frac{8\pi^2}{3} \sum_{i} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$ .

sion corrections were taken from ref. 9b; all calculations were performed using the TEXSAN [11] software package. Structural illustrations were drawn with ORTEP [12]. Atomic coordinates and equivalent isotropic thermal parameters are given in Tables 2 and 3, and selected geometrical parameters in Tables 4 and 5. Lists of observed and calculated structure factors, fractional coordinates for the hydrogen atoms, C-H bond distances, and anisotropic thermal parameters for the non-hydrogen atoms may be obtained from the authors.

# Discussion

Both the tetragonal (1) and the orthorhombic (2) phases of the 1:1 complexes between *endo*-dicyclopentadiene and copper(I) chloride contain discrete tetramers with distorted cubane or stellar quadrangular Cu<sub>4</sub>Cl<sub>4</sub> cores. The molecular structures of 1 and 2 are illustrated in Figs. 1 and 2, and stereoviews of the complexes are given in Figs. 3 and 4. Tetrameric olefinic complexes of copper(I) chloride with "tub" [13] and "step" [14,15] Cu<sub>4</sub>Cl<sub>4</sub> cores have been reported previously. The present complexes 1 and 2 exhibit cubane or stellar quadrangular cores of the type now relatively common in adducts between copper(I) chloride and phosphines or nitrogen-bases [16–19]. Table 4

Selected bond distances and angles in  $[Cu_4Cl_4(C_{10}H_{12})_4]$  (tetragonal, 1). X(1) and X(2) are the midpoints of the C(1)-C(2) and C(11)-C(12) bonds, respectively. Symmetry code: (i): 1/2 + y, x - 1/2, 1/2 - z

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                 |                                                      |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|------------------------------------------------------|-----------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cu(1)-C(1)                                           | 2.085(15)       | Cu(2)-C(11)                                          | 2.092(15) |
| $\begin{array}{c c} Cu(1)-Cl(1) & 3.015(4) & Cu(2)-Cl(1) & 2.296(4) \\ Cu(1)-Cl(2) & 2.297(4) & Cu(2)-Cl(2') & 2.808(4) \\ C(1)-C(2) & 1.40(2) & C(11)-Cl(2) & 1.41(2) \\ C(2)-Cl(3) & 1.52(2) & C(12)-Cl(3') & 1.54(2) \\ C(3)-C(4) & 1.49(2) & C(13)-Cl(4) & 1.59(2) \\ C(4)-C(5) & 1.50(2) & Cl(4)-Cl(5) & 1.52(3) \\ C(5)-C(6) & 1.40(2) & Cl(5)-Cl(6) & 1.42(3) \\ C(6)-C(7) & 1.46(3) & Cl(6)-Cl(7) & 1.49(3) \\ C(7)-C(8) & 1.58(2) & Cl(1)-Cl(8) & 1.53(2) \\ C(8)-C(9) & 1.55(2) & Cl(8)-Cl(4) & 1.58(2) \\ C(9)-Cl(1) & 1.48(2) & Cl(1)-Cl(1) & 1.58(2) \\ C(9)-Cl(1) & 1.48(2) & Cl(1)-Cl(2) & 1.59(2) \\ C(9)-Cl(1) & 1.48(2) & Cl(1)-Cl(2) & 1.57(2) \\ C(1)-Cu(2) & 3.288(3) & Cu(1)\cdots Cu(2') & 3.177(3) \\ Cu(1)\cdots Cu(2') & 3.258(3) & Cu(1)\cdots Cu(2') & 3.455(4) \\ Cl(1)-Cu(1)-X(1) & 132.0 & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(2)-Cu(1)-X(1) & 132.0 & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(2)-Cu(1)-X(1) & 132.0 & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(2)-Cu(1)-X(1) & 132.0 & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(1)-Cu(1)-X(1) & 132.0 & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(1)-Cu(1)-Cu(2) & 105.1(1) & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(1)-Cu(1)-Cl(2) & 105.1(1) & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(1)-Cu(1)-Cl(2) & 105.1(1) & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(2)-Cu(1)-X(1) & 122.6 & Cl(2)-Cu(2)-X(2) & 122.4 \\ Cl(1')-Cu(1)-Cl(2) & 105.1(1) & Cl(1)-Cu(2)-Cl(2) & 106.1(1) \\ Cu(1)-Cl(2)-Cl(3) & 106(1) & Cl(1)-Cl(2)-Cl(2) & 106.1(1) \\ Cu(1)-Cl(2)-Cl(3) & 106(1) & Cl(1)-Cl(2)-Cl(3) & 107(1) \\ Cl(2)-C(3) & 106(1) & Cl(1)-Cl(2)-Cl(3) & 107(1) \\ Cl(2)-Cl(3) & 106(1) & Cl(1)-Cl(2) & 108(1) \\ Cl(3)-C(4)-Cl(8) & 103(1) & Cl(3)-C(14)-Cl(8) & 103(2) \\ Cl(3)-C(4)-Cl(8) & 108(1) & Cl(3)-C(14)-Cl(8) & 103(2) \\ Cl(3)-C(4)-Cl(8) & 108(1) & Cl(3)-C(14)-Cl(8) & 103(2) \\ Cl(3)-C(4)-Cl(8) & 108(2) & Cl(4)-Cl(3)-Cl(4) & 103(2) \\ Cl(3)-C(4)-Cl(8) & 108(2) & Cl(4)-Cl(3)-Cl(4) & 103(2) \\ Cl(3)-C(4)-Cl(8) & 108(2) & Cl(4)-Cl(3)-Cl(4) & 103(2) \\ Cl(3)-Cl(4)-Cl(8) & 103(1) & Cl(3)-Cl(4)-Cl(8) & 103(2) \\ Cl(3)-Cl(4)-Cl(8) & 103(1) & Cl(3)-Cl(4)-Cl(8) & 103(2) \\ Cl(3)-Cl(4)-Cl(8) & 103(1) & Cl(3)-Cl(4)-Cl(8) & 103(2) \\ Cl(3)-Cl(4)-Cl(8) & 103(1) &$                                                                                                                                                                                                                                                              |                                                      |                 |                                                      |           |
| $\begin{array}{cccc} {\rm Cu}(1)-{\rm Cl}(2) & 2.297(4) & {\rm Cu}(2)-{\rm Cl}(2) & 2.300(4) \\ {\rm Cu}(1)-{\rm Cl}(1') & 2.274(4) & {\rm Cu}(2)-{\rm Cl}(2') & 2.808(4) \\ {\rm Cu}(1)-{\rm Cl}(2) & 1.40(2) & {\rm Cl}(1)-{\rm Cl}(2) & 1.41(2) \\ {\rm Cl}(2)-{\rm Cl}(3) & 1.52(2) & {\rm Cl}(1)-{\rm Cl}(1) & 1.59(2) \\ {\rm Cl}(3)-{\rm Cl}(4) & 1.49(2) & {\rm Cl}(1)-{\rm Cl}(1) & 1.59(2) \\ {\rm Cl}(4)-{\rm Cl}(5) & 1.50(2) & {\rm Cl}(4)-{\rm Cl}(15) & 1.52(3) \\ {\rm Cl}(5)-{\rm Cl}(6) & 1.40(2) & {\rm Cl}(1)-{\rm Cl}(1) & 1.49(3) \\ {\rm Cl}(5)-{\rm Cl}(6) & 1.40(2) & {\rm Cl}(1)-{\rm Cl}(1) & 1.49(3) \\ {\rm Cl}(7)-{\rm Cl}(8) & 1.58(2) & {\rm Cl}(1)-{\rm Cl}(1) & 1.58(2) \\ {\rm Cl}(8)-{\rm Cl}(4) & 1.58(2) & {\rm Cl}(1)-{\rm Cl}(1) & 1.58(2) \\ {\rm Cl}(8)-{\rm Cl}(4) & 1.58(2) & {\rm Cl}(1)-{\rm Cl}(1) & 1.59(2) \\ {\rm Cl}(8)-{\rm Cl}(4) & 1.58(2) & {\rm Cl}(1)-{\rm Cl}(2) & 1.59(2) \\ {\rm Cl}(9)-{\rm Cl}(1) & 1.48(2) & {\rm Cl}(1)-{\rm Cl}(2) & 1.57(2) \\ {\rm Cl}(9)-{\rm Cl}(1) & 1.50(2) & {\rm Cl}(9)-{\rm Cl}(1) & 1.51(2) \\ {\rm Cl}(9)-{\rm Cl}(1) & 1.50(2) & {\rm Cl}(2)-{\rm Cl}(2) & 1.57(2) \\ {\rm Cl}(1)-{\rm Cu}(2) & 3.288(3) & {\rm Cu}(1)-{\rm Cu}(2') & 3.177(3) \\ {\rm Cu}(1)-{\rm Cu}(1^{-1}) & 3.505(4) & {\rm Cu}(2)-{\rm Cu}(2^{-1}) & 3.545(4) \\ \\ {\rm Cl}(1')-{\rm Cu}(1)-{\rm Xl}(1) & 122.6 & {\rm Cl}(2)-{\rm Cu}(2)-{\rm Xl}(2) & 130.1 \\ {\rm Cl}(2)-{\rm Cu}(1)-{\rm Xl}(1) & 122.6 & {\rm Cl}(2)-{\rm Cu}(2)-{\rm Xl}(2) & 130.1 \\ \\ {\rm Cl}(1')-{\rm Cu}(1)-{\rm Cl}(2) & 105.1(1) & {\rm Cl}(1)-{\rm Cu}(2)-{\rm Cl}(2) & 106.1(1) \\ {\rm Cu}(1')-{\rm Cl}(1)-{\rm Cu}(2) & 88.1(1) & {\rm Cl}(1)-{\rm Cl}(2)-{\rm Cl}(3) & 107(1) \\ \\ {\rm Cl}(2)-{\rm Cl}(3)-{\rm Cl}(3) & 106(1) & {\rm Cl}(1)-{\rm Cl}(2)-{\rm Cl}(3) & 107(1) \\ \\ {\rm Cl}(2)-{\rm Cl}(3)-{\rm Cl}(3) & 106(1) & {\rm Cl}(1)-{\rm Cl}(2)-{\rm Cl}(3) & 107(1) \\ \\ {\rm Cl}(2)-{\rm Cl}(3)-{\rm Cl}(4) & 107(1) & {\rm Cl}(1)-{\rm Cl}(3)-{\rm Cl}(4) & 103(2) \\ \\ {\rm Cl}(3)-{\rm Cl}(4)-{\rm Cl}(8) & 103(1) & {\rm Cl}(1)-{\rm Cl}(3)-{\rm Cl}(4) & 103(2) \\ \\ {\rm Cl}(3)-{\rm Cl}(4)-{\rm Cl}(3) & 106(1) & {\rm Cl}(1)-{\rm Cl}(3)-{\rm Cl}(4) & 103(2) \\ \\ {\rm Cl}(3)-{\rm Cl}(4)-{\rm Cl}(3) & 106(1) & {\rm Cl}(1)-{\rm Cl}(3)-{\rm Cl}(4) & 103(2) \\ \\ {\rm Cl}(3)-{\rm Cl}(4)-{\rm Cl}(8) & 103(1) & {\rm Cl}(1)-{\rm Cl}(8)-{\rm Cl}(9) & 115(1) \\ \\ $ | Cu(1)-X                                              | 1.944           | Cu(2)–X                                              | 1.926     |
| $\begin{array}{cccc} Cu(1)-Cl(1^{i}) & 2.274(4) & Cu(2)-Cl(2^{i}) & 2.808(4) \\ C(1)-C(2) & 1.40(2) & C(11)-C(12) & 1.41(2) \\ C(2)-C(3) & 1.52(2) & C(12)-C(13) & 1.54(2) \\ C(3)-C(4) & 1.49(2) & C(13)-C(14) & 1.59(2) \\ C(4)-C(5) & 1.50(2) & C(14)-C(15) & 1.52(3) \\ C(6)-C(7) & 1.46(3) & C(16)-C(17) & 1.49(3) \\ C(7)-C(8) & 1.58(2) & C(18)-C(19) & 1.53(2) \\ C(8)-C(9) & 1.55(2) & C(18)-C(19) & 1.59(2) \\ C(8)-C(9) & 1.55(2) & C(18)-C(19) & 1.59(2) \\ C(9)-C(1) & 1.48(2) & C(19)-C(11) & 1.51(2) \\ C(9)-C(1) & 1.50(2) & C(19)-C(20) & 1.57(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ C(11)\cdots Cu(2) & 3.288(3) & Cu(1)\cdots Cu(2^{i}) & 3.177(3) \\ Cu(1)\cdots Cu(1^{i}) & 3.505(4) & Cu(2)\cdots Cu(2^{i}) & 3.545(4) \\ \hline Cl(1^{i})-Cu(1)-X(1) & 132.0 & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(2)-Cu(1)-X(1) & 132.0 & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(1^{i})-Cu(1)-Cl(2) & 105.1(1) & Cl(1)-Cu(2)-Cl(2) & 106.1(1) \\ Cu(1^{i})-Cu(1)-Cl(2) & 105.1(1) & Cl(1)-Cu(2)-Cl(2) & 106.1(1) \\ Cu(1^{i})-Cu(1)-Cl(2) & 105.1(1) & Cl(1)-Cu(2)-Cl(2) & 106.1(1) \\ Cu(1^{i})-Cl(1)-Cu(2) & 88.1(1) & Cu(1)-Cl(2)-Cl(2) & 106.1(1) \\ Cu(1^{i})-Cl(1)-Cu(2) & 88.1(1) & Cu(1)-Cl(2)-Cl(2) & 106.1(1) \\ Cu(1^{i})-Cl(1)-Cu(2) & 88.1(1) & Cu(1)-Cl(2) & 09.1(1) \\ C(1)-C(2)-C(3) & 106(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(13)-C(14) & 105(1) \\ C(2)-C(3)-C(4) & 103(1) & C(13)-C(14)-C(18) & 103(2) \\ C(3)-C(4)-C(8) & 108(1) & C(13)-C(14)-C(18) & 103(2) \\ C(3)-C(4)-C(8) & 108(1) & C(13)-C(14)-C(18) & 103(2) \\ C(3)-C(4)-C(8) & 108(1) & C(13)-C(14)-C(18) & 109(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(15)-C(16) & 107(2) \\ C(5)-C(6)-C(7) & 114(2) & C(15)-C(16) & 107$                                                                                                                                                                                                                                                    | Cu(1)-Cl(1)                                          | 3.015(4)        |                                                      | 2.296(4)  |
| $\begin{array}{ccccc} C(1)-C(2) & 1.40(2) & C(11)-C(12) & 1.41(2) \\ C(2)-C(3) & 1.52(2) & C(12)-C(13) & 1.54(2) \\ C(3)-C(4) & 1.49(2) & C(13)-C(14) & 1.59(2) \\ C(4)-C(5) & 1.50(2) & C(14)-C(15) & 1.52(3) \\ C(5)-C(6) & 1.40(2) & C(15)-C(16) & 1.42(3) \\ C(6)-C(7) & 1.46(3) & C(16)-C(17) & 1.49(3) \\ C(7)-C(8) & 1.58(2) & C(18)-C(14) & 1.58(2) \\ C(8)-C(4) & 1.58(2) & C(18)-C(14) & 1.58(2) \\ C(8)-C(9) & 1.55(2) & C(18)-C(19) & 1.59(2) \\ C(9)-C(1) & 1.48(2) & C(19)-C(11) & 1.51(2) \\ C(9)-C(10) & 1.50(2) & C(19)-C(20) & 1.57(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ C(1)\cdots Cu(2) & 3.288(3) & Cu(1)\cdots Cu(2^{1}) & 3.177(3) \\ Cu(1)\cdots Cu(1^{1}) & 3.505(4) & Cu(2)\cdots Cu(2^{1}) & 3.177(3) \\ Cu(1)\cdots Cu(1^{1}) & 3.505(4) & Cu(2)\cdots Cu(2^{1}) & 3.177(3) \\ C(1^{1})-Cu(1)-X(1) & 132.0 & C(1)-Cu(2)-X(2) & 130.1 \\ C(2)-Cu(1)-X(1) & 132.0 & C(1)-Cu(2)-X(2) & 130.1 \\ C(1)-Cu(2) & 88.1(1) & Cu(1)-Cu(2)-Cu(2) & 91.3(1) \\ C(1)^{1}-Cu(1)-Cu(2) & 88.1(1) & Cu(1)-Cu(2)-Cu(2) & 91.3(1) \\ C(2)-Cu(1)-X(1) & 122.6 & C(12)-Cu(2) & 91.3(1) \\ C(1)-Cu(2)-C(3) & 106(1) & C(12)-C(13) & 107(1) \\ C(2)-C(1)-Cu(2) & 88.1(1) & Cu(1)-Cu(2)-Cu(2) & 91.3(1) \\ C(1)-Cu(2)-C(3) & 106(1) & C(12)-C(12) & 105.1(1) \\ C(1)-Cu(2)-C(3) & 106(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(10) & 100(1) & C(12)-C(13) - C(20) & 98(1) \\ C(4)-C(3)-C(4) & 107(1) & C(13)-C(14)-C(18) & 103(2) \\ C(5)-C(4)-C(8) & 108(1) & C(13)-C(14)-C(18) & 103(2) \\ C(5)-C(6)-C(7) & 114(2) & C(15)-C(16) & 107(2) \\ C(5)-C(6)-C(7) & 113$                                                                                                                                                                                                                                             |                                                      |                 |                                                      | 2.300(4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Cu(1)-Cl(1^{i})$                                    | 2.274(4)        | $Cu(2)-Cl(2^{i})$                                    | 2.808(4)  |
| $\begin{array}{ccccc} C(3)-C(4) & 1.49(2) & C(13)-C(14) & 1.59(2) \\ C(4)-C(5) & 1.50(2) & C(14)-C(15) & 1.52(3) \\ C(5)-C(6) & 1.40(2) & C(15)-C(16) & 1.42(3) \\ C(6)-C(7) & 1.46(3) & C(16)-C(17) & 1.49(3) \\ C(7)-C(8) & 1.58(2) & C(18)-C(18) & 1.53(2) \\ C(8)-C(4) & 1.58(2) & C(18)-C(19) & 1.59(2) \\ C(8)-C(9) & 1.55(2) & C(18)-C(19) & 1.59(2) \\ C(9)-C(1) & 1.48(2) & C(19)-C(20) & 1.57(2) \\ C(9)-C(10) & 1.50(2) & C(19)-C(20) & 1.57(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ C(10)-C(3) & 1.56(2) & C(10)-C(12') & 3.177(3) \\ C(1)-C(1)^2 & 3.288(3) & Cu(1)\cdots Cu(2') & 3.177(3) \\ C(1)\cdots Cu(1') & 3.505(4) & Cu(2)\cdots Cu(2') & 3.545(4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(1)-C(2)                                            |                 | C(11)-C(12)                                          | 1.41(2)   |
| $\begin{array}{cccc} C(4)-C(5) & 1.50(2) & C(14)-C(15) & 1.52(3) \\ C(5)-C(6) & 1.40(2) & C(15)-C(16) & 1.42(3) \\ C(6)-C(7) & 1.46(3) & C(16)-C(17) & 1.49(3) \\ C(7)-C(8) & 1.58(2) & C(18)-C(14) & 1.58(2) \\ C(8)-C(4) & 1.58(2) & C(18)-C(14) & 1.58(2) \\ C(8)-C(9) & 1.55(2) & C(19)-C(11) & 1.51(2) \\ C(9)-C(10) & 1.50(2) & C(19)-C(20) & 1.57(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ Cu(1)\cdots Cu(2) & 3.288(3) & Cu(1)\cdots Cu(2^{-1}) & 3.177(3) \\ Cu(1)\cdots Cu(1^{-1}) & 3.505(4) & Cu(2)\cdots Cu(2^{-1}) & 3.545(4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | 1.52(2)         | C(12)-C(13)                                          | 1.54(2)   |
| $\begin{array}{ccccc} C(5)-C(6) & 1.40(2) & C(15)-C(16) & 1.42(3) \\ C(6)-C(7) & 1.46(3) & C(16)-C(17) & 1.49(3) \\ C(7)-C(8) & 1.58(2) & C(17)-C(18) & 1.53(2) \\ C(8)-C(4) & 1.58(2) & C(18)-C(14) & 1.58(2) \\ C(8)-C(9) & 1.55(2) & C(18)-C(19) & 1.59(2) \\ C(9)-C(1) & 1.48(2) & C(19)-C(11) & 1.51(2) \\ C(9)-C(1) & 1.50(2) & C(19)-C(13) & 1.55(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ Cu(1)\cdots Cu(2) & 3.288(3) & Cu(1)\cdots Cu(2^{1}) & 3.177(3) \\ Cu(1)\cdots Cu(1^{1}) & 3.505(4) & Cu(2)\cdots Cu(2^{1}) & 3.545(4) \\ \hline \\ C(1^{1})-Cu(1)-X(1) & 132.0 & Cl(1)-Cu(2)-X(2) & 130.1 \\ Cl(2)-Cu(1)-X(1) & 122.6 & Cl(2)-Cu(2)-X(2) & 122.4 \\ Cl(1^{1})-Cu(1)-Cu(2) & 105.1(1) & Cl(1)-Cu(2)-Cl(2) & 106.1(1) \\ Cu(1^{1})-Cu(1)-Cu(2) & 88.1(1) & Cu(1)-Cl(2) & 109(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13) & 109(1) \\ C(3)-C(4)-C(5) & 119(1) & C(13)-C(14) & 105(1) \\ C(3)-C(4)-C(8) & 108(1) & C(13)-C(14) & C(18) & 103(2) \\ C(3)-C(4)-C(8) & 108(1) & C(13)-C(14)-C(18) & 103(2) \\ C(3)-C(4)-C(8) & 108(1) & C(13)-C(14) & 103(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(15) & 118(2) \\ C(5)-C(6)-C(7) & 114(2) & C(15)-C(16) & 107(2) \\ C(5)-C(4)-C(8) & 106(2) & C(14)-C(18) & 109(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(18) & 103(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18)-C(19) & 115(1) \\ C(4)-C(8)-C(9) & 115(1) & C(17)-C(18)-C(19) & 115(1) \\ C(4)-C(8)-C(9) & 102(1) & C(13)-C(19)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19)-C(10) & 104(1) \\ C(8)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 96(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 96(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                           | C(3)C(4)                                             | 1. <b>49(2)</b> | C(13)-C(14)                                          | 1.59(2)   |
| $\begin{array}{ccccc} C(6)-C(7) & 1.46(3) & C(16)-C(17) & 1.49(3) \\ C(7)-C(8) & 1.58(2) & C(17)-C(18) & 1.53(2) \\ C(8)-C(4) & 1.58(2) & C(18)-C(14) & 1.58(2) \\ C(8)-C(9) & 1.55(2) & C(18)-C(19) & 1.59(2) \\ C(9)-C(1) & 1.48(2) & C(19)-C(11) & 1.51(2) \\ C(9)-C(10) & 1.50(2) & C(19)-C(20) & 1.57(2) \\ C(10)-C(3) & 1.56(2) & C(20)-C(13) & 1.55(2) \\ Cu(1)\cdots Cu(2) & 3.288(3) & Cu(1)\cdots Cu(2^{t}) & 3.177(3) \\ Cu(1)\cdots Cu(1^{t}) & 3.505(4) & Cu(2)\cdots Cu(2^{t}) & 3.545(4) \\ \hline C(1)^{t}-Cu(1)-X(1) & 132.0 & C(1)-Cu(2)-X(2) & 130.1 \\ C(2)-Cu(1)-X(1) & 122.6 & C(2)-Cu(2) & 130.1 \\ C(1)^{t}-Cu(1)-Cu(2) & 105.1(1) & C(1)-Cu(2)-Cu(2) & 130.1 \\ C(1)^{t}-Cu(1)-Cu(2) & 105.1(1) & C(1)-Cu(2)-Cu(2) & 91.3(1) \\ C(1)^{t}-Cu(2)-C(3) & 106(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3) & 106(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3) & 106(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(10) & 100(1) & C(12)-C(13) & 107(1) \\ C(3)-C(4)-C(5) & 119(1) & C(13)-C(14)-C(15) & 118(2) \\ C(3)-C(4)-C(8) & 103(1) & C(13)-C(14)-C(18) & 103(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(15) & 118(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(15) & 109(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(15) & 109(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(15) & 109(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(18) & 109(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18) & 109(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18) & 109(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18) & 109(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18)-C(19) & 115(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 103(1) & C(17)-C(18)-C(19) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 96(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(4)-C(5)                                            | 1.50(2)         | C(14)-C(15)                                          | 1.52(3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(5)-C(6)                                            |                 | C(15)-C(16)                                          | 1.42(3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(6)-C(7)                                            | 1.46(3)         | C(16)-C(17)                                          | 1.49(3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(7)_C(8)                                            |                 | C(17)-C(18)                                          | 1.53(2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      | 1.58(2)         | C(18)-C(14)                                          | 1.58(2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(8)-C(9)                                            | 1.55(2)         | C(18)-C(19)                                          | 1.59(2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(9)-C(1)                                            | 1.48(2)         | C(19)-C(11)                                          | 1.51(2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(9)-C(10)                                           | 1.50(2)         |                                                      | 1.57(2)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(10)-C(3)                                           | 1.56(2)         | C(20)-C(13)                                          | 1.55(2)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      | 3.288(3)        |                                                      | 3.177(3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\operatorname{Cu}(1)\cdots\operatorname{Cu}(1^{i})$ | 3.505(4)        | $\operatorname{Cu}(2)\cdots\operatorname{Cu}(2^{i})$ | 3.545(4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                 | Cl(1)-Cu(2)-X(2)                                     | 130.1     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                 |                                                      |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                 |                                                      | 106.1(1)  |
| $\begin{array}{ccccccc} C(1)-C(2)-C(3) & 106(1) & C(11)-C(12)-C(13) & 107(1) \\ C(2)-C(3)-C(4) & 107(1) & C(12)-C(13)-C(14) & 105(1) \\ C(2)-C(3)-C(10) & 100(1) & C(12)-C(13)-C(20) & 98(1) \\ C(4)-C(3)-C(10) & 102(1) & C(14)-C(13)-C(20) & 100(1) \\ C(3)-C(4)-C(5) & 119(1) & C(13)-C(14)-C(15) & 118(2) \\ C(3)-C(4)-C(8) & 103(1) & C(13)-C(14)-C(18) & 103(2) \\ C(5)-C(4)-C(8) & 108(1) & C(15)-C(14)-C(18) & 109(2) \\ C(4)-C(5)-C(6) & 108(2) & C(14)-C(15)-C(16) & 107(2) \\ C(5)-C(6)-C(7) & 114(2) & C(15)-C(16) & 107(2) \\ C(5)-C(6)-C(7) & 114(2) & C(15)-C(16)-C(17) & 112(2) \\ C(6)-C(7)-C(8) & 106(2) & C(16)-C(17)-C(18) & 109(2) \\ C(7)-C(8)-C(4) & 103(1) & C(17)-C(18)-C(14) & 103(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18)-C(19) & 115(1) \\ C(4)-C(8)-C(9) & 102(1) & C(14)-C(18)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19)-C(20) & 96(1) \\ C(8)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                 |                                                      | 91.3(1)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                 |                                                      |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(1)-C(2)-C(3)                                       | 106(1)          |                                                      | 107(1)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                 |                                                      | 105(1)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                 |                                                      |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                 | C(14)-C(13)-C(20)                                    |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      | 119(1)          | C(13)-C(14)-C(15)                                    | 118(2)    |
| $\begin{array}{cccccc} C(4)-C(5)-C(6) & 108(2) & C(14)-C(15)-C(16) & 107(2) \\ C(5)-C(6)-C(7) & 114(2) & C(15)-C(16) & -C(17) & 112(2) \\ C(6)-C(7)-C(8) & 106(2) & C(16)-C(17) & -C(18) & 109(2) \\ C(7)-C(8)-C(4) & 103(1) & C(17)-C(18)-C(14) & 103(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18)-C(19) & 115(1) \\ C(4)-C(8)-C(9) & 102(1) & C(14)-C(18)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19)-C(20) & 96(1) \\ C(8)-C(9)-C(1) & 107(1) & C(18)-C(19)-C(11) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                 | C(13)-C(14)-C(18)                                    | 103(2)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(5)-C(4)-C(8)                                       | 108(1)          | C(15)-C(14)-C(18)                                    | 109(2)    |
| $\begin{array}{ccccc} C(6)-C(7)-C(8) & 106(2) & C(16)-C(17)-C(18) & 109(2) \\ C(7)-C(8)-C(4) & 103(1) & C(17)-C(18)-C(14) & 103(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18)-C(19) & 115(1) \\ C(4)-C(8)-C(9) & 102(1) & C(14)-C(18)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19)-C(20) & 96(1) \\ C(8)-C(9)-C(1) & 107(1) & C(18)-C(19)-C(11) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                 | C(14)-C(15)-C(16)                                    | 107(2)    |
| $\begin{array}{ccccc} C(7)-C(8)-C(4) & 103(1) & C(17)-C(18)-C(14) & 103(2) \\ C(7)-C(8)-C(9) & 115(1) & C(17)-C(18)-C(19) & 115(1) \\ C(4)-C(8)-C(9) & 102(1) & C(14)-C(18)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19)-C(20) & 96(1) \\ C(8)-C(9)-C(1) & 107(1) & C(18)-C(19)-C(11) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                 |                                                      | 112(2)    |
| $\begin{array}{ccccccc} C(7)-C(8)-C(9) & 115(1) & C(17)-C(18)-C(19) & 115(1) \\ C(4)-C(8)-C(9) & 102(1) & C(14)-C(18)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19)-C(20) & 96(1) \\ C(8)-C(9)-C(1) & 107(1) & C(18)-C(19)-C(11) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                 | C(16)-C(17)-C(18)                                    | 109(2)    |
| $\begin{array}{cccc} C(4)-C(8)-C(9) & 102(1) & C(14)-C(18)-C(19) & 104(1) \\ C(8)-C(9)-C(10) & 100(1) & C(18)-C(19)-C(20) & 96(1) \\ C(8)-C(9)-C(1) & 107(1) & C(18)-C(19)-C(11) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | 103(1)          | C(17)-C(18)-C(14)                                    | 103(2)    |
| $\begin{array}{cccc} C(8)-C(9)-C(10) & 100(1) & C(18)-C(19)-C(20) & 96(1) \\ C(8)-C(9)-C(1) & 107(1) & C(18)-C(19)-C(11) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(7)-C(8)-C(9)                                       | 115(1)          | C(17)-C(18)-C(19)                                    | 115(1)    |
| $\begin{array}{cccc} C(8)-C(9)-C(1) & 107(1) & C(18)-C(19)-C(11) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |                 | C(14)-C(18)-C(19)                                    |           |
| $\begin{array}{cccc} C(8)-C(9)-C(1) & 107(1) & C(18)-C(19)-C(11) & 106(1) \\ C(1)-C(9)-C(10) & 103(1) & C(11)-C(19)-C(20) & 99(1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |                 |                                                      | 96(1)     |
| C(1)-C(9)-C(10) 103(1) $C(11)-C(19)-C(20)$ 99(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |                 |                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                 | C(11)-C(19)-C(20)                                    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(9)-C(10)-C(3)                                      | 94(1)           |                                                      | 97(1)     |

The isomers differ in the nature of their cores. In 2 the Cu  $\cdots$  Cl distances are elongated in the crystallographic *a* direction, i.e. Cu(1)  $\cdots$  Cl(1<sup>*i*</sup>) = 2.827(3) and Cu(2)  $\cdots$  Cl(2<sup>*i*</sup>) = 2.852(3) Å, the molecule thus being most appropriately described as a loose association of two dimeric Cu<sub>2</sub>Cl<sub>2</sub>(C<sub>10</sub>H<sub>12</sub>)<sub>2</sub> units. Similar, but less pronounced distortion has been noted for [Cu<sub>4</sub>Cl<sub>4</sub>(PPh<sub>3</sub>)<sub>4</sub>] [16], [Cu<sub>4</sub>Br<sub>4</sub>(PPh<sub>3</sub>)<sub>4</sub>] [18] and [Cu<sub>4</sub>Cl<sub>4</sub>(tmspy)<sub>4</sub>], (tmspy = 2-[bis(trimethylsilyl)methyl]pyridine) [17]. Dis-

### Table 5

| Cu(1)-C(1)               | 2.052(8)  | Cu(2)-C(11)                                            | 2.051(9)          |
|--------------------------|-----------|--------------------------------------------------------|-------------------|
| Cu(1) - C(2)             | 2.077(9)  | Cu(2)C(12)                                             | 2.064(8)          |
| Cu(1)-X(1)               | 1.950     | Cu(2)-X(2)                                             | 1.938             |
| Cu(1)-Cl(1)              | 2.323(3)  | Cu(2)-Cl(1)                                            | 2.297(2)          |
| Cu(1)-Cl(2)              | 2.284(2)  | Cu(2)–Cl(2)                                            | 2.317(3)          |
| $Cu(1)-Cl(1^{i})$        | 2.827(3)  | $Cu(2) - Cl(2^{i})$                                    | 2.852(3)          |
| C(1)-C(2)                | 1.359(12) | C(11)-C(12)                                            | 1.383(12)         |
| C(2)-C(3)                | 1.506(13) | C(12)-C(13)                                            | 1.510(11)         |
| C(3)-C(4)                | 1.580(13) | C(13)-C(14)                                            | 1.558(12)         |
| C(4)-C(5)                | 1.508(15) | C(14)-C(15)                                            | 1.518(14)         |
| C(5)-C(6)                | 1.400(16) | C(15)-C(16)                                            | 1.483(20)         |
| C(6)-C(7)                | 1.411(15) | C(16)-C(17)                                            | 1.336(20)         |
| C(7)-C(8)                | 1.517(13) | C(17)-C(18)                                            | 1.516(14)         |
| C(8) - C(4)              | 1.552(12) | C(18)C(14)                                             | 1.546(13)         |
| C(8)-C(9)                | 1.577(12) | C(18)-C(19)                                            | 1.578(12)         |
| C(9) - C(1)              | 1.500(12) | C(19)-C(11)                                            | 1.504(13)         |
| C(9)-C(10)               | 1.525(12) | C(19)-C(20)                                            | 1.533(12)         |
| C(10)-C(3)               | 1.517(14) | C(20)-C(13)                                            | 1.526(11)         |
| $Cu(1) \cdots Cu(2)$     | 3.016(2)  | $Cu(1) \cdots Cu(2^{i})$                               | 3.532(2)          |
| $Cu(1) \cdots Cu(1^{i})$ | 3.305(3)  | $\operatorname{Cu}(2) \cdots \operatorname{Cu}(2^{i})$ | 3.182(2)          |
| Cl(1)-Cu(1)-X(1)         | 125.6     | Cl(1)-Cu(2)-X(2)                                       | 132.4             |
| Cl(2)-Cu(1)-X(1)         | 133.8     | Cl(2)-Cu(2)-X(2)                                       | 126.7             |
| Cl(1)-Cu(1)-Cl(2)        | 97.75(9)  | Cl(1)-Cu(2)-Cl(2)                                      | 97.53(9)          |
| Cu(1)-Cl(1)-Cu(2)        | 81.55(9)  | Cu(1)-Cl(2)-Cu(2)                                      | 81.92(9)          |
| C(2)-C(1)-C(9)           | 106.0(8)  | C(12)-C(11)-C(19)                                      | 105. <b>9</b> (8) |
| C(1)-C(2)-C(3)           | 106.8(8)  | C(11)-C(12)-C(13)                                      | 105.6(8)          |
| C(2)C(3)-C(4)            | 104.8(8)  | C(12)-C(13)-C(14)                                      | 106.6(7)          |
| C(2)-C(3)-C(10)          | 100.5(8)  | C(12)-C(13)-C(20)                                      | 101.7(6)          |
| C(4)-C(3)-C(10)          | 100.1(8)  | C(14)-C(13)-C(20)                                      | 100.1(7)          |
| C(3)-C(4)-C(5)           | 199.2(9)  | C(13)-C(14)-C(15)                                      | 117.6(9)          |
| C(3)-C(4)-C(8)           | 102.9(8)  | C(13)-C(14)-C(18)                                      | 102.6(7)          |
| C(5)-C(4)-C(8)           | 110.1(10) | C(15)-C(14)-C(18)                                      | 104.8(9)          |
| C(4) - C(5) - C(6)       | 110.7(10) | C(14)-C(15)-C(16)                                      | 104.7(11)         |
| C(5)-C(6)-C(7)           | 110.1(12) | C(15)-C(16)-C(17)                                      | 116.2(12)         |
| C(6)-C(7)-C(8)           | 110.6(10) | C(16)-C(17)-C(18)                                      | 106.8(12)         |
| C(7)-C(8)-C(4)           | 103.6(9)  | C(17)-C(18)-C(14)                                      | 107.4(9)          |
| C(7)-C(8)-C(9)           | 116.8(8)  | C(17)-C(18)-C(19)                                      | 117.7(8)          |
| C(4)-C(8)-C(9)           | 102.9(7)  | C(14)-C(18)-C(19)                                      | 103.5(7)          |
| C(8)-C(9)-C(10)          | 98.8(7)   | C(18)-C(19)-C(20)                                      | 98.8(7)           |
| C(8)-C(9)-C(1)           | 106.7(8)  | C(18)-C(19)-C(11)                                      | 105.4(8)          |
| C(1)-C(9)-C(10)          | 101.3(7)  | C(11)-C(19)-C(20)                                      | 102.3(7)          |
| C(9)-C(10)-C(3)          | 96.0(7)   | C(19)-C(20)-C(13)                                      | 94.9(7)           |

Selected bond distances and angles in  $[Cu_4Cl_4(C_{10}H_{12})_4]$  (orthorhombic, 2). X(1) and X(2) are the midpoints of the C(1)-C(2) and C(11)-C(12) bonds, respectively. Symmetry code: (i): 2 - x, y, 3/2 - x

tortion of the cube towards a stellar quadrangular configuration is apparent from Figs. 2 and 4. The core of 1 is distorted such that there is no cube face which is composed of four short Cu-Cl bonds (cf. Table 4 and Fig. 1) and, if the long Cu(1)-Cl(1) or Cu(2)-Cl(2<sup>i</sup>) contacts of 3.015(4) and 2.808(4) Å (symmetry code (i): 1/2 + y, x - 1/2, 1/2 - z) are disregarded, the core can be seen as a "tub" similar to that in the complex between norbornadiene and CuCl, [Cu<sub>4</sub>Cl<sub>4</sub>(C<sub>7</sub>H<sub>8</sub>)]



Fig. 1. Tetra- $\mu$ -chloro-tetrakis[dicyclopentadienecopper(I)] (tetragonal, 1) showing the crystallographic numbering. The thermal ellipsoids enclose 30% probability.



Fig. 2. Tetra- $\mu$ -chloro-tetrakis[dicyclopentadienecopper(I)] (orthorhombic, 2) showing the crystallograpic numbering. The thermal ellipsoids enclose 30% probability.



Fig. 3. Stereoview of tetra-µ-chloro-tetrakis[dicyclopentadienecopper(I)] (tetragonal, 1).

[13]. As can be seen from Figs. 3 and 4, the core of 1 shows less distortion towards the stellar quadrangular configuration than does that of 2.

The infrared frequencies shown by the two compounds are in good agreement with one another, and also with those values determined previously [4]. As expected, endo-dicyclopentadiene coordinates to copper(I) via the C=C double bond in the norbornene ring in both complexes. The Cu-C distances lie within the range reported for  $\pi$ -olefinic complexes of copper(I) (see e.g. refs. 20–21, and references therein), and there are slight, but not significant, lengthenings of the C=C double bonds. The copper(I) atoms all exhibit distorted tetrahedral (trigonal pyramidal) coordination, with the olefin and two chloride ligands in the trigonal plane and a fourth chloride ligand at 2.8-3.0 Å, the copper(I) atoms in 1 being displaced by 0.07 and 0.13 Å from the trigonal plane in the direction of the apical chloride ligands; the corresponding displacements in 2 are 0.20 and 0.22 Å. The inequality of the Cl-Cu-X angles associated with both copper(I) centres in the two complexes, where X is the midpoint of the norbornene C=C, (cf. Tables 4 and 5), suggest that there is olefin-sliding [22] in the trigonal plane. For neither complex was it possible to locate the double bond of the cyclopentene ring, there being disorder associated with C(5), C(6), C(7) and C(15), C(16), C(17), as is apparent from the C-C distances and the thermal ellipsoids for these atoms.

The most striking difference between molecules 1 and 2 lies in the mutual orientation of the four dicyclopentadiene ligands. In 2, which can be regarded as a loose association of dimeric entities, ligands *trans* to one another are related by an approximate 2-fold axis (Figs. 2 and 4), such that two Cu-X linkages each lie



Fig. 4. Stereoview of tetra-µ-chloro-tetrakis[dicyclopentadienecopper(I)] (orthorhombic, 2).

approximately along the diagonals of the faces of the core perpendicular to the crystallographic *a* direction. In 1 the ligands are twisted relative one another such that each Cu-X linkage is parallel to a diagonal of a different face of the  $Cu_4Cl_4$  cube, these four faces circumscribing the cubane core (Figs. 1 and 3).

The molecular geometries, and in particular, the relative location of the short Cu-Cl distances within the two cores suggests that whereas the tetragonal phase is likely to exist as a tetramer in solution, the orthorhombic phase (2) probably dissociates into dimers in solution. Since copper(I) would be coordinatively unsaturated in the latter species, it is not inconceivable that 2 may prove to be a useful starting material for the preparation of mixed  $\pi$ -acid ligand complexes of copper(I).

The complexes between dicyclopentadiene and copper(I) chloride, although unstable with respect to loss of ligand, are considerably more stable than e.g. [Cu(CO)Cl] [23], and complexes between  $\alpha,\beta$ -unsaturated carbonyl compounds [21] or dienes [7] and CuCl, in which the copper-chloride framework is polymeric. The resistance of  $[CuCO(O^{t}Bu)]_{4}$ , which has a cubane  $Cu_{4}O_{4}$  core, to decarbonylation has been attributed to its kinetic stability, i.e. to the unfavourable pyramidal coordination geometry for copper(I) that would be present in the initial decarbonylation product [24]. The relative stability of the tetrameric complexes between copper(I) and dicyclopentadiene with respect to loss of the diene can be attributed to a mechanism similar to that described for [CuCO(O'Bu)]<sub>4</sub> [24]. In complexes prone to loss of ligand that contain polymeric Cu-Cl frameworks, on the other hand, proximity of chloride ligands to an initially pyramidal metal centre formed during decomposition promote tetrahedral coordination by chloride, the final decomposition product being solid CuCl. A further factor contributing to the relative stability of the complexes between dicyclopentadiene and copper(I) chloride may be ring strain, the stability constants of complexes between *endo*-cycloolefins and silver(I) having been found to increase with increase in ring strain within the ligand [3,25].

# Acknowledgement

Financial support from the Swedish Natural Science Research Council (NFR) is gratefully acknowledged.

# References

- 1 U. Belluco, B. Crociani, R. Pietropaolo and P. Uguagliati, Inorg. Chim. Acta, Rev., 3 (1969) 19.
- 2 G.N. Schrauzer and S. Eichler, Chem. Ber., 95 (1962) 260.
- 3 H.W. Quinn and J.H. Tsai, Adv. Inorg. Radiochem., 12 (1969) 217.
- 4 B.W. Cook, R.G.J. Miller and P.F. Todd, J. Organomet. Chem., 19 (1969) 421.
- 5 R.G. Salomon and J.K. Kochi, J. Am. Chem. Soc., 95 (1973) 1889.
- 6 H.L. Haight, J.R. Doyle, N.C. Baenziger and G.F. Richards, Inorg. Chem., 2 (1963) 1301.
- 7 M. Håkansson, S. Jagner and D. Walther, in preparation; M. Håkansson and S. Jagner, in preparation.
- 8 R.N. Keller and H.D. Wycoff, Inorg. Synth., 2 (1946) 1.
- 9 International Tables for X-ray Crystallography, (a) Vol. I, Kynoch Press, Birmingham, 1952 and (b) Vol. IV, 1974.
- 10 C.J. Gilmore, J. Appl. Crystallogr., 17 (1984) 42.
- 11 TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, Texas, 1989.
- 12 C.K. Johnson, ORTEP, ORNL Report 3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A., 1965.

- 13 N.C. Baenziger, H.L. Haight and J.R. Doyle, Inorg. Chem., 3 (1964) 1535.
- 14 T.C.W. Mak, H.N.C. Wong, K.H. Sze and L. Book, J. Organomet. Chem., 255 (1983) 123.
- 15 S. Andersson, M. Håkansson, S. Jagner, M. Nilsson and F. Urso, Acta Chem. Scand., A40 (1986) 194.
- 16 M.R. Churchill and K.L. Kalra, Inorg. Chem., 13 (1974) 1065.
- 17 P.F. Barron, J.C. Dyason, L.M. Engelhardt, P.C. Healy and A.H. White, Inorg. Chem., 23 (1984) 3766.
- 18 J.C. Dyason, P.C. Healy, L.M. Engelhardt, C. Pakawatchai, V.A. Patrick, C.L. Raston and A.H. White, J. Chem. Soc., Dalton Trans., (1985) 831.
- 19 L.M. Engelhardt, P.C. Healy, J.D. Kildea and A.H. White, Aust. J. Chem., 42 (1989) 107.
- 20 A. Camus, N. Marsich, G. Nardin and L. Randaccio, Inorg. Chim. Acta, 23 (1977) 131.
- 21 (a) S. Andersson, M. Håkansson, S. Jagner, M. Nilsson, C. Ullenius and F. Urso, Acta Chem. Scand., A, 40 (1986) 58; (b) M. Håkansson and S. Jagner, J. Organomet. Chem., 361 (1989) 269.
- 22 S.D. Ittel and J.A. Ibers, Adv. Organomet. Chem., 14 (1976) 33.
- 23 M. Håkansson and S. Jagner, Inorg. Chem., in press.
- 24 R.L. Geerts, J.C. Huffman, K. Folting, T.H. Lemmen and K.G. Caulton, J. Am. Chem. Soc., 105 (1983) 3503.
- 25 J.G. Traynham and J.R. Olechowski, J. Am. Chem. Soc., 81 (1959) 571.